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An aeroelastic model and analytical solution methodology are developed to find the flutter solutions for the

continuous representation of a two-segment uniform folding wing. The model is developed such that different

parameters can be easily modified to examine changes in the flutter solutions. Of these parameters, the fold angle

between the inboard and outboard wing segments is of particular interest for understanding the fundamental

aeroelastic behavior of folding wings. The results are presented as the evolution of the aeroelastic frequencies and

damping with respect to the freestream velocity. This enables the determination of flutter speeds and modes. Three

aerodynamic models of increasing sophistication are considered, which underscore the sensitivity of the flutter

solution to unsteady effects. The capabilities of the aeroelastic analysis are demonstrated for a test case in which the

flutter speed is plotted versus fold angle for three aerodynamic models.

Nomenclature

a = axis of rotation at 1
2
ac from midchord (positive aft)

C� ��� = Theodorsen function
c = chord, m
D� ��� = generalized or complex Theodorsen function
E = Young’s modulus, Pa
G = shear modulus, Pa
h = vertical displacement of elastic axis (positive down), m
hU = vertical displacement of elastic axis perpendicular to

U1 and span (positive down), m
Ixx = area moment of inertia the cross-sectional x axis

( 1
12
cw3), m4

Iy = mass moment of inertia per unit span
( 1
12
�wc3 � �Px2P), kg �m

J = Saint-Venant’s torsion constant (1
3
cw3), m4

�L = lift per unit span, N=m
‘ = span, m
�M = moment per unit span, N �m=m
m = wing spanwise density (�wc� �P), kg=m
Sy = static mass moment per unit span (�PxP), kg
T = kinetic energy, J
t = time, s
U = potential energy, J
U1 = freestream velocity, m=s
W = virtual work, J
w = thickness, m
xyz = Cartesian coordinates
xP = distance of spanwise line mass from elastic axis

(positive aft), m
� = angle of attack, rad
�� � = variational operator
� = temporal eigenvalue, Hz
�� = reduced temporal eigenvalue (�c=2U1)
� = spatial eigenvalue, 1=m
�̂ = spatial eigenvalue squared (�2), 1=m2

�P = spanwise line mass density, kg=m
� = uniform wing density, kg=m3

�1 = freestream density, kg=m3

� = twist about the elastic axis (positive along
the y axis), rad

 = fold angle, rad
� = @=@t
0 = @=@y

Subscripts

F = uniform wing
i, j, k = matrix/vector indices
P = spanwise line mass
S = torsional spring
1 = inboard wing
2 = outboard wing

I. Introduction

R ECENT studies in aircraft design suggest that wing configu-
rations with significant morphing capability will lead to the

next generation ofmultitask aircraft [1,2]. Currently, there are several
research efforts focused on developingwings capable of dramatically
changing their span during flight [3–5]. To meet this challenge,
effective theoretical and computationalmethods are developed in this
paper to model the coupled structural and aerodynamic behavior
of a folding-wing configuration. Exact solutions are obtained for a
linear continuum model of a two-segment folding wing, from which
both divergence and flutter aeroelastic instabilities are identified.
Structures experiencing either of the aforementioned instabilities
could suffer significant damage, if not failure, due to large-amplitude
oscillations.

A continuum model with exact solutions provides a framework to
understand the fundamental physics of folding-wing configurations.
The solution procedure is exact in that it solves the differential
equations of motion directly and does not rely on either the spatial
discretization of finite element or modal analysis. Thus, the present
solution provides benchmark solutions for any discretized method
of solution and it is the folding-wing analog to the well-known
Goland wing solution for a single-element beam-wing analysis.
The solution procedure is also exact in that it solves for the true aero-
elastic eigenvalues at all flow speeds, unlike classical flutter solution
methods, which are only exact at the flutter speed per se.

The dynamic model is developed using Hamilton’s principle. The
aerodynamic forces are modeled using strip theory for thin airfoils
[6]. Following this assumption, three linear subsonic aerodynamic
models are considered: steady, quasi-steady, and full unsteady.
The complexity of the solutions and numerical efforts depend on the
sophistication of themodel. Therefore, it is worthwhile to investigate
the fidelity of the steady and quasi-steady solutions in relation to
the unsteady solutions.
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II. Development of Equations of Motion
and Boundary Conditions

The structural model consists of two wing segments. The inboard
wing is clamped at its root, and the outboard wing is connected to the
inboard wing through a single hinge. Each wing segment is modeled
as a uniform flat plate with a superimposed spanwise line mass at a
prescribed chordwise location. The presently developed equations of
motion and boundary conditions can also be applied to uniformwing
segments for which the elastic axis (EA) does not coincide with the
half-chord. Aerodynamic considerations for an EA not coincident
with the half-chord are discussed in subsequent sections. Note that a
point mass added at the outboard segment tip would contribute to
the outer wing’s boundary conditions. Indeed, a point mass at any
spanwise location could be taken into account, but at the cost of
additional complexity in the analysis.

A. Structural Model

The current derivation models the two wing segments as flat
rectangular plates of equal chord with uniform material properties.
Each flat plate is considered to be thin, meaning that the thickness is
much smaller than the chord and length of any given wing segment.
Linear elastic beam theory is used to describe the dynamic behavior
of the wing segments. The EA is located at the half-chord. Even
though each plate has uniform material properties, a uniform line
mass along the span has been added to separate the chordwise center
of mass (CM) from the EA. This linemass is located xP aft of the EA.
The aerodynamic center (AC) is located a quarter-chord distance
fore of the EA. The motion of the CM of each wing segment along
the chordwise direction is neglected. The vertical deflection hi and
the twist �i are functions of yi and t only (see Fig. 1). A single one-
degree-of-freedomhingewith a linear torsional spring constant along
the entire chord connects the inboard and outboard wings. For an
undeflected configuration, the wing segments are at a fixed fold
angle  with respect to each other; an undeflected torsional spring
corresponds to this fold angle.

The coordinate systems used are depicted in Fig. 1. The origins of
the coordinate systems for both the inboard (x1y1z1) and outboard
(x2y2z2) wings are along the EA, corresponding to the half-chord.
Each segment has two degrees of freedom: hi and �i. The vertical
displacement hi is measured from the EA and is positive downward.
The twist about the EA �i is measured along the positive yi axis. The
origin of x2y2z2 is located at x1 � 0, y1 � ‘1, and z1 � h1�‘1; t�,
where x2 is parallel to the chord of the tip of the inboard wing. By
definition, �2�0; t� � h2�0; t� � 0. Note that x1y1z1 is fixed with
respect to inertial space, as opposed to x2y2z2.

The structural dynamics of each wing segment are modeled by
Euler–Bernoulli beam theory. Forces due to gravity are considered
negligible and are thus excluded for the analysis. The expressions for
the kinetic and potential energies are included in Appendix A.

B. Aerodynamic Model

Steady, quasi-steady, and full unsteady linear aerodynamicmodels
are considered for incompressible subsonic flows. The aeroelastic

models use strip theory, which assumes that the lift on each wing
segment is proportional to the geometric angle of attack and is
independent of all other spanwise locations [6]. Each of these span-
wise strips uses known results for two-dimensional flow (i.e., for
an infinite span airfoil) and applies them to finite span airfoils.
According to thin airfoil theory, the aerodynamic center is located at
the quarter-chord from the leading edge. The parameter a is defined
positive aft from the midchord, where 1

2
ac is the distance from the

midchord to the EA.
Of particular importance for implementing all three models is the

proper definition of the angle of attack or twist � and the distance of
the EAperpendicular to theflowhU. By convention, theflowvelocity
U1 is along the x axis, and hU is positive downward, as shown in
Fig. 2.

Both �1 and hU;1 of the inboard wing can be readily obtained and
should be obvious after neglecting higher-order terms in �1 and h1:

�1 � �1�y1; t� (1)

hU;1 � h1�y1; t� (2)

Less obvious, but still intuitive, are�2 andhU;2 for the outboardwing:

�2 � �1�‘1; t� cos � �2�y2; t� (3)

hU;2 � h1�‘1; t� cos � h2�y2; t� (4)

The expressions used for lift and moment are limited to the
Laplace domain, represented by the complex � plane. The extension
of these aerodynamic theories to the time domain is beyond the scope
of this paper.

1. Steady Model

A steady aerodynamic model is the simplest model considered in
this paper. This model serves as a useful reference to interpret the
solutions from the quasi-steady and full unsteady models. For this

steadymodel, the lift per unit span �L depends linearly on the angle of

attack, and the aerodynamicmoment per unit span �M is due to the lift
applied at the quarter-chord [7,8]:

�L� �c�1U2
1� (5)

�M� 1
2
c2�1U

2
1�12� a�� (6)

It is worth noting that the preceding expressions do not contain a time
derivative, thus making it a steady model.

2. Quasi-Steady Model

The quasi-steady model considered is similar to the steady model,
but it accounts for the effects of the EAvelocity on the instantaneous
inclination of the airfoil [7,8]. Hence, the steady angle of attack � is
replaced with the effective angle of attack �� �h=U1�.

Fig. 1 Coordinates used in discussion of a two-segment folding wing.

The curves represent the EA of the wing.

Fig. 2 Airfoil schematic defining the angle of attack � and distance of

EA perpendicular to the freestream velocity hU . Both a and xP are

positive aft.
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3. Unsteady Model

The most sophisticated model considered is an unsteady aero-
dynamic model following a generalization of Theodorsen theory for
damped oscillations. One of the key resulting features of the theory is
the generalized Theodorsen function, which depends on themotion’s
frequency and damping and describes the magnitude and phase of
circulatory effects in unsteady aerodynamics. The expressions for
the resulting lift and aerodynamic moment in the Laplace domain
are equivalent to those of the classical Theodorsen theory, with the
exception that the Theodorsen function C� ��� is replaced by the
generalized or complex Theodorsen function D� ��� [9,10]:

D� ��� � K1� ���
K1� ��� � K0� ���

(7)

where K0 and K1 are the modified Bessel functions of the second
kind, and �� is the reduced temporal eigenvalue. The expression for
the generalized Theodorsen function is defined in the entire complex
plane, except on the branch cut along the negative real axis and the
branch point at the origin. For the special case of �� i=���, we
recover the Theodorsen function [11]:

D�i=� ���� � C�=� ���� � H�2�1 �=� ����
H�2�1 �=� ���� � iH

�2�
0 �=� ����

(8)

where H�2�1 and H�2�0 are Hankel functions of the second kind.
The general expressions for lift and moment per unit span follow

[7,8]:

�L� 1
4
�c2�1� �hU �U1 _� � 1

2
ca ���

� �c�1U1D� ���� _hU �U1�� 1
2
c�1

2
� a� _�� (9)

�M � 1
8
�c3�1�a �hU � U1�12 � a� _� � 1

2
c�1

8
� a2� ���

� 1
2
�c2�1U1�12� a�D� ���� _hU �U1�� 1

2
c�1

2
� a� _�� (10)

In general, the EA is located 1
2
ac aft of the midchord, but for the

model presently analyzed, the EA is located at the midchord (i.e.,
a� 0).

C. Equations of Motion and Boundary Conditions

The equations of motion are derived from Hamilton’s principle
and the known boundary conditions (see Table 1):

Z
t2

t1

��T � �U� �W� dt� 0 (11)

Note that all of the aerodynamics are contained in the virtual work
�W. The virtual work depends only on the aerodynamics because
there is no structural damping.

The terms �T and �U in Eq. (11) can be obtained by applying the �
operator directly to the kinetic and potential energy expressions
presented in Appendix A. The expression for the virtual work due
to aerodynamic forces requires kinematic considerations to be
expressed in terms of the known lift and moment per unit span,
particularly for the outboard wing:

�W �
Z
‘1

0

�M1��1�y1; t� � �L1�h1�y1; t� dy1

�
Z
‘2

0

�M2���1�‘1; t� cos � ��2�y2; t��

� �L2��h1�‘1; t� cos � �h2�y2; t�� dy2 (12)

1. Equations of Motion

Sy ��1�y1; t� �m �h1�y1; t� � EIxxh�iv�1 �y1; t� � �L1�y1; t� � 0

(13)

Sy� ��1�‘1; t� cos � ��2�y2; t�� �m� �h1�‘1; t� cos � �h2�y2; t��

� EIxxh�iv�2 �y2; t� � �L2�y2; t� � 0 (14)

Iy ��1�y1; t� � Sy �h1�y1; t� � GJ�001�y1; t� � �M1�y1; t� � 0 (15)

Iy� ��1�‘1; t� cos � ��2�y2; t�� � Sy� �h1�‘1; t� cos � �h2�y2; t��
� GJ�002�y2; t� � �M2�y2; t� � 0 (16)

2. Boundary Conditions

There are a total of 12 boundary conditions (BCs): three from the
clamped end of the inboard wing, three from the free end of the
outboard wing, and six from their hinged connection. They are split
into two groups (Tables 1 and 2), depending on their origin.

Boundary conditions 11 and 12 follow directly from the presence
of a linear torsional spring connecting the twowing segments. On the
other hand, BCs 9 and 10, related to the continuity of the twist
moment and shear, are less obvious. In the case of  � 0 deg, these
BCs state that �01�‘1; t� � �02�0; t� and h0001 �‘1; t� � h0002 �0; t�, which
are the expected conditions for a single uniform beam. The presence
of inertial terms in BCs 9 and 10 for the general case of � 0 deg is
related to the use of a noninertial coordinate system to describe the
outboard wing [i.e., x2y2z2 (see Fig. 1)].

Additional insights into the physical origins of BCs 9 and 10 are
obtained from considering the case of � 90 deg, in which case the
outboard wing is perpendicular to the inboard wing. If the two wing
segments are perpendicular, the elastic forces at the end of the
inboard wing are balanced entirely by the inertial forces of the

outboard wing. The coefficient of �h1�‘1; t� in BC 9 is the moment of
inertia about the y1 axis of the outboard wing, which, after some

manipulation, is given by 1
3
m‘32 � Iy‘2. The term in �h1�‘1; t�

corresponds to an additional twist moment that comes from the
vertical motion of the line mass �P‘2 at distance xP from the axis of
rotation. These two inertial contributions balance the elastic term
GJ�01�‘1; t� in BC 9 for the case of � 90 deg. Similarly, for BC 10
with  � 90 deg, the total mass of the outboard wing, m‘2, has a

vertical acceleration of �h1�‘1; t�, and a mass of �P‘2 has a tangential

Table 1 Boundary conditions obtained from the definition

of the problem and coordinate system

No. Condition Description

1 h1�0; t� � 0 Zero displacement on the clamped end
2 h01�0; t� � 0 Zero bending slope on the clamped end
3 �1�0; t� � 0 Zero deflection on the clamped end
4 h2�0; t� � 0 Follows definition of x2y2z2
5 �2�0; t� � 0 Follows definition of x2y2z2
6 h002�‘2; t� � 0 Zero bending moment on the free end
7 h0002 �‘2; t� � 0 Zero shear at the free end
8 �02�‘2; t� � 0 Zero twist moment at the free end

Table 2 Boundary conditions extracted
from Hamilton’s principle

No. Condition

9 GJ��01�‘1; t� � �02�0; t� cos � � Sy‘2 �h1�‘1; t�sin2 
��1

3
m‘32 � Iy‘2� ��1�‘1; t�sin2 � 0

10 EIxx�h0002 �0; t� cos � h0001 �‘1; t�� �m‘2 �h1�‘1; t�sin2 
�Sy‘2 ��1�‘1; t�sin2 � 0

11 k�h02�0; t� � h01�‘1; t�� � EIxxh001�‘1; t� � 0
12 h001�‘1; t� � h002�0; t� � 0
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acceleration of xP ��1�‘1; t�, both of which balance the shear from
EIxxh

000
2 �0; t�.

III. Eigenvalue Evolution

This section introduces a methodology for determining the
exact aeroelastic eigenvalues. The solution procedure is exact in
that it solves the differential equations of motion directly. Thus,
the present solution provides benchmark solutions for any
discretized method of solution and it is the folding-wing analog
to the Goland wing solution for a single-element beam-wing
analysis. The solution procedure is also exact in that it solves
for the true aeroelastic eigenvalues at all flow speeds, unlike
classical flutter solution methods, which are only exact at the
flutter speed.

A. Solution Procedure

The equations of motion and boundary conditions presented
in the last section comprise a 12th-order system of linear, non-
homogeneous, partial differential equations with their appropriate
boundary conditions. The aerodynamic lift and moment contribute
only to the homogeneous problem. Even though three aerodynamic
models are considered in the folding-wing model, only the solution
methodology for the most sophisticated (i.e., unsteady aerody-
namics) will be presented. A discussion of the variations among the
different models is included in Appendix B.

In solving the aeroelastic system, the temporal eigenvalues (each

denoted by ��k�) and corresponding modes (��k�i and h�k�i (are to be
determined. The sought kth aeroelastic mode is assumed to follow
the form

��k�1 �
X6
j�1

C�k�j A
�k�
1;j exp���k�t� �jy1�

��k�2 �
X6
j�1

C�k�j�6A
�k�
2;j exp���k�t� �jy2� � �

�k�
2;p

h�k�1 �
X6
j�1

C�k�j B
�k�
1;j exp���k�t� �jy1�

h�k�2 �
X6
j�1

C�k�j�6B
�k�
2;j exp���k�t� �jy2� � h

�k�
2;p

(17)

where the superscript (k) is used to denote values corresponding to
the kth temporal eigenvalue, and the subscript p indicates particular
solutions.

The homogeneous parts of the equations of motion in yi for the
inboard and outboard wings are identical. This homogeneous
problem can be expressed as an eigenvalue problem in �, with
resulting modes of the form

��j�i � Ai;j exp��t� �jyi� h�j�i � Bi;j exp��t� �jyi� (18)

where j is used to denote the jth mode, and the subscript i� 1, 2
denotes, as usual, the inboard and outboard wings.

Following the solution form of Eq. (18), the homogeneous parts
of Eqs. (13–16) can be expressed as

�Mi��̂��
Ai
Bi

� �
� �1��� �2��� � �̂

2

�3��� � �̂ �4���

� �
Ai
Bi

� �
� 0 (19)

where

�1��� �
1

EIxx

��
Sy �

1

8
�c3a

�
�2

� 1

2
��1c

2U1

�
1

2
�
�
1

2
� a

�
D� ���

�
�� ��1cU2

1D� ���
�

�2��� �
1

EIxx

��
m� 1

4
��1c

2

�
�2 � ��1cU1D� ����

�

�3��� �
1

GJ

��
Iy �

1

16
��1c

4

�
1

8
� a2

��
�2

� 1

4
��1c

3U1

�
1

2
� a

��
1

2
�
�
1

2
� a

�
D� ���

�
�

�

� 1

GJ

�
1

2
��1c

2U2
1

�
1

2
� a

�
D� ���

�

�4��� �
1

GJ

��
Sy �

1

8
��1c

3a

�
�2

� 1

2
��1c

2U1

�
1

2
� a

�
D� ����

�

The expressions for �j are subject to change depending on the
assumed aerodynamic theory; the appropriate expressions for steady
and quasi-steady theories are included in Appendix B.

Equation (19) is a quadratic eigenvalue problem (QEP) in �̂,

because it can be expressed as a quadratic equation in �̂ with matrix
coefficients. QEPs presents various subtleties when compared with
linear eigenvalue problems [12,13]. However, in practice, we can
normally neglect the alluded subtleties and extract physically

relevant eigenvalues from det�Mi��̂�� � 0, neglecting any infinite

eigenvalues. Three finite eigenvalues are obtained from Mi��̂�.
Because the number of eigenvalues exceeds the dimensions ofMi��̂�
the eigenvectors from different eigenvalues need not be linearly
independent. Having linearly dependent eigenvectors from different
eigenvalues is a general characteristic of nonlinear eigenvalue
problems.

If a particular eigenvalue has multiple eigenvectors that are
linearly dependent, the matrix and eigenvalue are considered to be
defective. For the current discussion, defectiveness implies that
the assumed solution form e�y��t is inadequate. Solutions corre-
sponding to defective eigenvalues will be discussed later in greater
detail.

The origins and implications of defective eigenvalues for QEPs
can be illustrated by considering a one-dimensional spring-mass

damper. The equation ofmotion for this system is ~m �	� ~c _	� ~k	� 0,
and its corresponding eigenvalues are 
� i� and 
 � i�. Normally,
the general solution is of the form a1e

�
�i��	 � a2e�
�i��	. Yet, for the
case of �� 0 (i.e., ~c2 � 4 ~m ~k�0), the eigenvalue is defective, and
the general solution must be of the form a1e


	 � a2	e
	.
Although only three eigenvalues are obtained from Mi��̂�, they

correspond to the six eigenvalues of Mi���, because ��	
���̂
�

p
.

Additionally, an eigenvector corresponding to �̂k in Mi��̂� is the

same for both eigenvalues 	
�����
�̂k

q
inMi���.

After obtaining the eigenvalues and eigenvectors of Mi���, the
nonhomogeneous problem is addressed. It is evident from Eqs. (14)
and (16) that the nonhomogeneous terms do not depend on y2.
Therefore, it follows after eliminating the spatial partial derivatives in
Eqs. (14) and (16) that

�2;p�t� � ��1�‘1; t� cos h2;p�t� � �h1�‘1; t� cos (20)

The final step is solving another nonlinear eigenvalue problem to
determine the temporal eigenvalues ��k�. Once ��k� of the dynamic
aeroelastic system are known, the stability problem of a folding wing
can be addressed. To determine ��k�, a 12 by 12 matrix D��� is
constructed from the boundary conditions found in Tables 1 and 2
and using the solution form of Eq. (17):

�D���k���12
12�C�k��12
1 � 0 (21)
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where ��k� is the kth temporal eigenvalue, with corresponding
eigenvector C�k�.

An explicit representation of this matrix is found in Appendix C.
Unlike the quadratic eigenvalue problem in Eq. (19), the current
nonlinear eigenvalue problem is not a polynomial eigenvalue
problem, but rather a transcendental eigenvalue problem. Therefore,
there is no restriction on the number of eigenvalues that can be
obtained. Once again, we can obtain all of the physically relevant
solutions from the nondefective eigenvalues computed from
det�D���� � 0.

B. Overview of Numerical Methods

At the core of the solution procedure is an algorithm that assumes a
complex value for � for a given freestream velocity and fold angle
and determines whether it corresponds to a nontrivial eigenvalue.
The assumed values of � are such that they sample a predetermined
region of the complex plane. This procedure is repeated for different
values of freestream velocity so that the evolution of aeroelastic
eigenvalues can be constructed. For each assumed value of �, the
solution methodology presented in the previous section is followed.
Figure 3 provides an outline of the procedure.Numerical calculations
for this methodology are performed in MATLAB.

The central point is that if one wishes to find the true aeroelastic
eigenvalues of the system for not only the flutter point (neutrally
stable) but also for damped (preflutter) as well as postflutter
conditions, the present analysis is required. The standard flutter
solutions methods, including V-g and p-k, do not suffice.

As shown in Fig. 3, the first step in the solution procedure is to
select a fold angle and freestream velocity and to assume a value for

�. Having done so, the homogeneous problem in yi is addressed. The
spatial eigenvalues � for Eq. (19) are found using the packaged
MATLAB root-finding command roots, which can handle com-
plex solutions and solutions with a multiplicity greater than one. The
eigenvectors corresponding to nondefective eigenvalues present no
difficulty for this 2 by 2 matrix. It follows for this problem that if two
or more eigenvalues are close to each other, then the matrix is
possibly defective. To determine whether the eigenvalue is actually
defective and not just a tightly spaced cluster of distinct eigenvalues,
the condition numbers for the solution should be calculated [13].
This proves to be unnecessary for the current purpose, because if the
eigenvalues are defective, they should be discarded because they do
not follow the assumed solution. Furthermore, if they are distinct but
closely spaced eigenvalues, it has been shown numerically that they
correspond to trivial solutions.

After determining the � and their appropriate eigenvectors, the
particular solutions are obtained from Eq. (20). These solutions
provide sufficient information to compute det�D����. It is unlikely
that the assumed value for � is such that det�D���� is identically zero;
therefore, multiple neighboring values of � have to considered to
identify a zero crossing of both <�det�D����� and =�det�D�����.

The procedure for determining zero crossings is such that
det�D���� is calculated for range of =��� for a fixed <���, and zero
crossings for either <�det�D����� or =�det�D����� are recorded (see
Fig. 4a). Then the value of <��� is changed and the procedure is
repeated. In this manner, the region of the complex � plane is
sampled. The end results are contours of the surfaces corresponding
to <�det�D����� � 0 and =�det�D����� � 0 at a given U1 (see
Fig. 4b).When the contour of the<�det�D����� � 0 intersects that of
=�det�D����� � 0, a possible temporal eigenvalue is identified.
Finally, all of the possible eigenvalues are plotted on the complex �
plane with a third axis corresponding to U1 (see Fig. 4c). This final
3-D plot shows the eigenvalue evolution and provides all of the
information needed to identify divergence and flutter, even though it
is commonly more practical to consider its real and imaginary
projections.

A summary of the methodology used is depicted in Fig. 4.
The progression from Fig. 4a to Fig. 4c allows for various checks on
the numerical validity of the solution. Furthermore, these plots can be
used to provide additional insights into the possible degeneracy of
the eigenvalues. Given the nature of the nonlinear eigenvalue
problem, it has been observed that special attention needs to paid
to repeated eigenvalues to ensure that they are not defective.
Additionally, all of the numerical results presented are limited to the
positive =���, given that the current analysis shows a symmetry
about the real axis in the � plane.

The aforementioned methodology does not address the issue
of defective, trivial, and physically uninteresting solutions. As
previously mentioned, defective solutions can occur when there are
repeated eigenvalues, either in � or �. If the degeneracy of an
eigenvalue is greater than the number of corresponding eigenvectors,

Fig. 3 Outline of numerical procedure to determine nontrivial

temporal eigenvalues � as they evolve with freestream velocity U1.

a) b) c) 

Fig. 4 Sequence of numerical calculations for determining the true aeroelastic eigenvalues: a) observe zero crossings of<�jDj� and=�jDj�, b) consider
zero crossings for multiple values of <���, providing contours of <�jDj� � 0 and =�jDj� � 0 [if <�jDj� � =�jDj� � 0 the corresponding � is a possible

eigenvalue], and c) multiple freestream velocities are considered.

2354 LISKA AND DOWELL



the eigenvalue and matrix are considered defective. A defective
solution implies that a different solution form needs to be considered
along with the appropriate generalized eigenvector; this issue
remains a subject of investigation. Trivial and physically un-
interesting solutions can be grouped together as solutions that yield
zero pitch and plunge for both wing segments. Because of the limited
resolution involved in sampling possible eigenvalues and numerical
round-off error, it is difficult to compute eigenvectors accurately,
and it is particularly challenging to identify zero quantities. When
eigenvalues are suspected of leading to zero pitch and plunge, the
mode shape is computed. In Table 1, there are certain locations for
which �i and hi should be identically zero; � is the value of the mode
shape at these locations. If the maximum amplitude of the mode
shape is of the same magnitude as �, the mode shape is considered
to be approximately equal to zero. For nontrivial solutions, the
maximum value of the mode shape is typically two or more orders
of magnitude greater than �. Figure 5 depicts all of the solutions,
trivial and nontrivial, obtained from the model using unsteady
aerodynamics. The number of trivial solutions decreases for the
quasi-steady and steady models.

C. Solution Verification

Given that the current aeroelastic model for a folding-wing
configuration is relatively complicated, various special cases for
which the system reduces to something more familiar have been
compared with known literature solutions. Each additional step of
sophistication in the model has been verified with its more limited
predecessor, leading all the way down to the structural model of a
simple cantilevered beam. Furthermore, the special case of  �
0 deg and k!1 is computed according to the parameters used for
the Goland wing [14,15]. On a historical note, Goland’s original
paper [14] cites incorrect flutter speeds and frequencies for the
parameters used; this mistake is corrected in the appendix of [15].
[Other classical literature (e.g., [8]) may only reference the original
paper.] The flutter speed of the current model is 138:0 m=s, which is
compared with 137:2 m=s of the original Goland wing. The 0.6%
difference is attributed to slight differences in air density. Finally, all
of the results have been compared and accurately matched to those of
an independently developed component modal analysis using the
same parameters.

IV. Results

A test case is considered to demonstrate the results of the model
and analysis. The parameters listed in Table 3 are representative of a
physical model that could be tested in the Duke University wind
tunnel. As previously mentioned, the calculations culminate in a 3-D
plot depicting the complex temporal eigenvalue � versus the
freestream velocity U1. To understand this information, the
imaginary and real projections of these plots for the three different
aerodynamic models are depicted in Fig. 6. To avoid redundancy,
only the results for positive =��� are included because the system

exhibits symmetry about the <��� axis. By looking at U1 � 0, the
structural natural frequencies can be read from the steady and quasi-
steady models; the apparent mass terms involved in the unsteady
model for this test case do not significantly change the frequencies
at U1 � 0. The lowest two frequencies at U1 � 0 correspond to
bending,whereas the third and fourth frequencies come from torsion.

The importance of the aerodynamicmodel used can be appreciated
by the dramatic differences of flutter speeds and, more important, of
flutter modes. The parameters for this test casewere chosen such that
the first torsion frequency would be slightly above a bending
frequency at U1 � 0. This choice in parameters leads to the
coalescence of the second bending and first torsion modes in the
steady model and the early flutter instability in the quasi-steady
model, which is reflected as a significant curve veering in the
unsteady model.

If the first complex eigenvalue region for the steady model (which
begins at the flutter speed but ends shortly thereafter) is neglected,
note that the beginning of the second region in the steady model is
very close to the flutter speed of the unsteady model. Even though
this observation seems suggestive of a means to obtain a more
accurate portrait of the actual flutter speed using the steady model,
this is not consistent for different parameters, particularly for other
fold angles.

Figure 7 illustrates the effects of the fold angle  on the flutter
speed. Note that the flutter speed is not a monotonic function of fold
angle and indeed has a minimum as a function of  . The fold angle
affects both the structural and aerodynamic models, of course. But,
especially for the steady flow aerodynamic model, the effects of the
fold angle may be understood primarily in terms of their impact on
the position of the structural natural frequencies. When the two key
natural frequencies are brought closer together by a variation in fold
angle, the flutter speed is lower and vice versa.

Note, moreover, that the effect of the quasi-steady or fully
unsteady aerodynamic theory is to diminish the variation in
flutter speed with fold angle. It is also seen that the quasi-steady
aerodynamic theory gives an overly conservative prediction of
flutter speed. The steady aerodynamic theory may be conservative or

Fig. 5 Evolution of real and imaginary parts of the temporal eigenvalue �with respect toU1. The majority of trivial solutions occur at zero frequency,

=��� � 0, therefore they are depicted as single lines along the horizontal axis in the left plot. This figure should be contrasted with the two bottom plots of

Fig. 6, which do not contain trivial or physically uninteresting solutions.

Table 3 List of parameters considered

for the test case

Parameter Value

c 8:00 
 10�2 m
E 7:00 
 1010 Pa
G 2:50 
 1010 Pa
k 5:50 
 10�1 N �m
w 6:35 
 10�4 m
xP 2:00 
 10�2 m
� 1:50 
 10�2 m
� 2:70 
 103 kg=m3

‘1 1:00 
 10�1 m
‘2 1:70 
 10�1 m
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unconservative relative to the prediction of the fully unsteady
aerodynamic theory.

V. Conclusions

A linear aeroelastic continuum model for a two-segment folding
wing is developed. An exact method, free of dynamic approxi-
mations and spatial discretization, is used to determine the frequency
and damping at different freestream velocities and fold angles.

The detail development of the exact mathematical solution offers

insight into aeroelastic phenomena before, during, and postflutter.
Solutions are obtained for the three aerodynamic models con-

sidered. The comparison of the flutter speed and mode for the three
models clearly demonstrates the sensitivity of the aeroelastic
behavior of folding wings to unsteady effects. Both the steady and
quasi-steady models result in a change in flutter mode for a much
smaller fold angle compared with the unsteady model. As one might
expect, the flutter speed is initially lowered by an increase in fold

Fig. 6 Evolution of real and imaginary parts of the temporal eigenvalue�with respect toU1. The transition of a solid line to dashed line indicates a shift
from stable to unstable oscillations. Of these transitions, the one that occurs at the lowest value of U1 is identified as the flutter velocity.

Fig. 7 Flutter speed and frequency for different fold angles. Asterisks (*) indicate changes in the flutter modes.
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angle (for the case of the more accurate unsteady model), yet the
flutter does not monotonically decrease. Past a critical fold angle, the
flutter speed increases beyond that of a zero fold angle.

In the special case for which the wing resembles a single
cantilevered wing, the Goland wing’s flutter speed and frequency
are reproduced. The physical assumptions of the model should be
questioned for fold angles close to 90 deg, because spanwise forces
along the inboard wing, which are neglected by the current beam
model, might become significant to the dynamics of the system.
Regardless, exact solutions for the flutter speed and mode presented
in this paper provide benchmark solutions for determining the
error of approximate methods. Accurate approximate methods
are unavoidable for similar aeroelastic analyses of folding-wing
configurations with more complicated geometries and material
properties.

Appendix A: Structural Kinetic and Potential Energy

I. Kinetic Energy

The overall kinetic energy is obtained by considering each
segment separately. Furthermore, for each segment, the kinetic
energy due to the homogeneous flat plate TiF and the chordwise
cross-sectional point mass TiP are computed separately. The kinetic
energy is calculated by integrating the velocity squared of differential
elements of the wing. The velocity is determined with respect to a
fixed coordinate system x̂ ŷ ẑ, which coincides with x1y1z1 (see
Fig. 1). Higher-order effects of hi and �i are discarded to yield
the desired linear model. The resulting expressions for the kinetic
energy are

T � T1F � T1P � T2F � T2P (A1)

T1F �
1

24
�wc

Z
‘1

0

c2� _�1�y1; t��2 � 12� _h1�y1; t��2 dy1 (A2)

T1P �
1

2
�P

Z
‘1

0

�xP _�1�y1; t� � _h1�y1; t��2 dy1 (A3)

T2F �
1

24
�wc

Z
‘2

0

�c2 � 12y22�� _�1�‘1; t� sin �2

� 12� _h1�‘1; t� sin �2 � c2� _�1�‘1; t� cos � _�2�y2; t��2

� 12� _h1�‘1; t� cos � _h2�y2; t��2 dy2 (A4)

T2P �
1

2
�P

Z
‘2

0

y22� _�1�‘1; t��2sin2 � �xP _�2�y2; t�

� _h2�y2; t��2sin2 � �xP _�1�‘1; t� � xP _�2�y2; t� cos 

� _h1�‘1; t� � _h2�y2; t� cos �2 dy2 (A5)

II. Potential Energy

The terms in the potential energy come from the deformation of the
individual wing segments and from the torsional deflection between
the two plates at the hinge with respect to the undeformed fold angle
 . The contributions to the potential energy from the former and
latter sources are denoted byUiF andUS, respectively.Note that there
is no contribution to the potential energy of the outboard wing due
to the motion of the inboard wing, and vice versa, except for that
corresponding to the torsional spring connecting the two segments.
Both UiF and US follow well-known results from the literature:

U�U1F �U2D �US (A6)

UiF �
1

2

Z
‘i

0

GJ��0i�yi; t��2 � EIxx�h00i �yi; t��2 dyi (A7)

US � 1
2
k�h02�0; t� � h01�‘1; t��2 (A8)

For Eqs. (A7) and (A8), Saint-Venant’s rigidity constant J and the
chordwise cross-sectional moment of inertia Ixx are

‡

J� 1
3
w3c Ixx � 1

12
w3c (A9)

Appendix B: Homogeneous Problem for Steady and
Quasi-Steady Aerodynamic Models

The equations of motion and solution methodology discussed in
the main body of this paper are based on an unsteady aerodynamic
model. The aerodynamics contribute only to the homogeneous
problem, particularly the definitions of �j��� in Eq. (19). By
modifying �j���, any of the three aerodynamic models presently
considered can be accommodated.

I. Steady Model

�1��� �
1

EIxx

�
Sy�

2 � 1

2
��1cU

2
1

�
�2��� �

1

EIxx
m�2

�3��� �
1

GJ

�
Iy�

2 � 1

2
��1c

2U2
1

�
1

2
� a

��

�4��� �
1

GJ
Sy�

2

II. Quasi-Steady Model

�1��� �
1

EIxx

�
Sy�

2 � 1

2
��1cU

2
1

�

�2��� �
1

EIxx
�m�2 � ��1cU1��

�3��� �
1

GJ

�
Iy�

2 � 1

2
��1c

2U2
1

�
1

2
� a

��

�4��� �
1

GJ

�
Sy�

2 � 1

2
��1c

2U1

�
1

2
� a

�
�

�

Appendix C: Boundary Condition Matrix

The rows of the boundary conditionmatrixD are in the same order
as the conditions found in Tables 1 and 2 following the solution form
of Eq. (17).

I. For i� 1; 2; . . . ; 6

D1;i � B1;i D2;i � �iB1;i D3;i � A1;i

D4;i ��B1;ie
�i‘1 cos D5;i ��A1;ie

�i‘1 cos D6;i � 0

D7;i � 0 D8;i � 0

D9;i �
�
GJ�i �

�
1

3
m‘32 � Iy‘2

�
�2sin2 

�
A1;ie

�i‘1

� Sy‘2�2B1;ie
�i‘1 sin2 

D10;i � Sy‘2�2A1;ie
�i‘1 sin2 � �m‘2�2sin2 � EIxx�3i �B1;ie

�i‘1

D11;i ���k�i � EIxx�2i �B1;ie
�i‘1 D12;i � �2i B1;ie

�i‘1

‡The torsional constant J is obtain by taking the limit of w=c! 0 [16].
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II. For i� 6; 7; . . . ; 12

To obtain compact expressions, let j� i � 6:

D1;i � 0 D2;i � 0 D3;i � 0 D4;i � B2;j

D5;i � A2;j D6;i � �2jB2;je
�j‘2 D7;i � �3jB2;je

�j‘2

D8;i � �jA2;je
�j‘2 D9;i ��GJ�jA2;j cos 

D10;i � EIxx�3jB2;j cos D11;i � k�jB2;j D12;i ���2jB2;j
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